THE JOURNAL OF ANTIBIOTICS

RIT 2214, A NEW BIOSYNTHETIC PENICILLIN PRODUCED BY A MUTANT OF *CEPHALOSPORIUM ACREMONIUM*

H. TROONEN, P. ROELANTS and B. BOON

Bacteriology Department, Research Division, Recherche et Industrie Thérapeutiques (R.I.T.), Rixensart, Belgium

(Received for publication August 10, 1976)

A number of lysine-requiring auxotrophs of *Cephalosporium acremonium* were investigated for incorporation of side-chain precursors and for accumulation of β -lactam compounds. One of the auxotrophs, *Acremonium chrysogenum* ATCC 20389, producing cephalosporin C and penicillin N only if grown in media supplemented with DL- α -amino-adipic acid (DL- α -AAA), was found to use L-S-carboxymethylcysteine (L-CMC) as a side-chain precursor for the synthesis of a new penicillin (RIT 2214). No corresponding cephalosporin was detected. The penicillin present in the culture filtrate, was concentrated by adsorption on activated carbon and successive column chromatography on Amberlite IRA-68 and Amberlite XAD-4. Final purification was achieved by cellulose column chromatography.

RIT 2214 was identified as 6-(D)- {[(2-amino-2-carboxy)-ethylthio]-acetamido}-penicillanic acid by spectral analysis, bioactivity spectrum, elucidation of side-chain structure and finally by semisynthesis. Its biological properties were also evaluated.

Typically, *Penicillium chrysogenum* synthesizes a large variety of N-acyl penicillin compounds by the method of precursor supplementation. This is in marked contrast to the few β -lactam antibiotics, all containing the D- α -amino-adipyl side-chain, produced by *Cephalosporium acremonium*¹). Hitherto described penicillin N producing species are insensitive to incorporation of extraneous side-chain precursors into antibiotic. This study was designed to evaluate the incorporation of penicillin precursors and/or α -AAA analogues by a lysine-requiring mutant of *Cephalosporium acremonium*, blocked in its lysine pathway before α -aminoadipate.

The present communication describes the production, isolation, elucidation of the chemical structure and biological characterization of a new penicillin synthesized by L-S-carboxymethylcysteine (L– CMC) feeding of the mutant culture.

Possible consequences on the hypothetical branched pathway for biosynthesis of penicillin N and cephalosporin C are discussed.

Material and Methods

Strains and Culture Conditions

The RIT 2214 producing lysine auxotroph, *Acremonium chrysogenum* ATCC 20389, was derived from the original wild type *Cephalosporium* sp. BROTZU strain ATCC 11550(reclassified as *Acremonium chrysogenum*²) by treatment with N-methyl-N'-nitro-N-nitrosoguanidine (ROELANTS, unpublished results, 1971).

Morphologic characteristics of the mutant strain were described previously⁸). Cultures were maintained on complete sporulation medium.

Sporulation medium: Soya-bean meal, 15 g; $CaCO_{3}$, 10 g; glucose, 10 g; sucrose, 36 g; agar, 20 g; 1,000 ml deionized water, pH adjusted to 7.0. Inoculated slants were incubated at 28°C for 12 days followed by storage at 4°C.

Fermentation Procedures

A 1-ml suspension of spores, obtained from one slant, was used to inoculate flasks containing seed medium.

<u>Penicillin precursors</u>⁴): Phenylacetic acid, phenylacetamide, phenoxyacetic acid, cyclohexylacetic acid, propionic acid, butyric acid, hexanoic acid, *trans*-2-hexenoic acid, adipic acid, methylmercapto-acetic acid, *n*-butylmercaptoacetic acid.

<u> α -AAA analogues</u>: D- and DL- α -aminoadipic acid⁵), DL-2-bromoadipic acid⁵), DL-2-azidoadipic acid⁶), DL-2, 5-diaminoadipic acid⁷), DL-piperidonecarboxylic acid⁸), DL-glutamic acid, DL- α -aminopimelic acid, L- and D-S-carboxymethylcysteine⁹), DL-3, 3-dimethyl-S-carboxymethylcysteine⁹), L-5-methyl-S-carboxymethylcysteine⁹), L-S-carboxymethylcysteine-sulfoxide¹⁰), L-S-carboxymethylcysteine-sulfoxide¹⁰), L-S-carboxymethylcysteine-sulfoxide¹⁰), L-S-carboxymethylcysteine-sulfoxide¹¹). Side-chain precursor solutions were filter-sterilized and added to the inoculated fermentor medium after 24-hour incubation.

Detection of Antibiotics

The precursor supplemented fermentor medium was screened microbiologically for the presence of β -lactam antibiotics using Alcaligenes faecalis ATCC 8750, Alcaligenes viscolactis, Escherichia coli ATCC 10536, and Staphylococcus aureus R1001 (cephalosporin P resistant strain, BOON and ROELANTS unpublished results, 1969) as indicator organisms. Discrimination between penicillin and cephalosporin compounds was made by incorporation of 50 units/ml penicillinase in the assay-medium. Cephalosporin C activity was determined qualitatively by a plate assay method, using Alcaligenes faecalis ATCC 8750^{12,13} in agar containing penicillinase. Alcaligenes viscolactis (RIT departmental strain) was found to be about ten-times as sensitive to penicillin N as to cephalosporin C. Hence this organism was suitable for detection and qualitative determination of penicillin N-like antibiotics.

Chromatographic Separation of β -Lactam Antibiotics

Chromatography was performed to confirm the production of penicillin-like and/or cephalosporinlike compounds by the original wild type strain and the biochemical mutant.

Filtered broth samples were spotted onto Whatman no. 4 paper. Chromatograms were developed with *n*-butanol-acetic acid-water (4: 1: 5) upper phase. The β -lactam antibiotics were detected by bioautography on respectively *Bacillus subtilis* ATCC 6633; *Alcaligenes faecalis* ATCC 8750 and *Alcaligenes viscolactis*-seeded agar plates. Antibiotics were identified by Rf and co-chromatography of standards. 6-APA and/or 7-ACA production was evaluated chromatographically by a well-known procedure¹⁴).

Synthesis of 6-D- {[(2-Amino-2-carboxy)-ethylthio]-acetamido} -penicillanic acid (III)

To a stirred solution of 3.63 g (0.03 mole) of D-cysteine (I) and 2.4 g (0.03 mole) of ammonium bicarbonate in 100 ml of distilled water flushed with nitrogen, was added at once, 11.25 g (0.03 mole) of $6-(\alpha$ -bromoacetamido)-penicillanic acid ammonium salt (II) prepared according to PERRON *et al.*¹⁸⁾ Stirring was continued at room temperature for 30 minutes. The mixture was then cooled to 5°C, layered with 100 ml of methylisobutylketone (MIBK) and extracted by mixing vigorously while adjusting the pH at 3.0 with Dowex-50×12 (H⁺). This extraction procedure was repeated twice and MIBK extracts were discarded. The aqueous phase was carefully neutralized with 25 % ammonium hydroxide solution and concentrated up to 50 ml by evaporation under reduced pressure at 30°C.

The concentrate was poured in 500 ml ice-cold ethanol. The precipitate that formed was collected by filtration, washed with 50 ml cold ethanol and dried *in vacuo* over P_2O_5 to yield 11.0 g of compound III. An analytical sample of compound III was prepared by dry-column chromatography¹⁶) on microcrystalline cellulose. The column was developed with an isopropanol - water (70: 30) mixture and was then sliced in 2-cm thick segments which were eluted with 20 ml distilled water. The purified antibiotic was detected by spotting 50 μ l amounts of different fractions on thin-layer silica gel plates. The thinlayers were developed with the following solvent systems: *n*-butanol - ethanol - acetic acid - water (10: 1.5: 1.5: 2)¹⁷; *n*-butanol - acetic acid - water (4: 1: 1)¹⁸) and acetonitrile - water (75: 25)¹⁹.

The purified antibiotic was identified on the plates by spraying with respectively: ninhydrin; $0.01 \text{ N } \text{I}_2/\text{starch}$; $1 \text{ N } \text{NaOH}/0.02 \text{ N } \text{I}_2/\text{starch}$ and finally by bioautography on *Bacillus subtilis* ATCC 6633-seeded agar plates. Pure antibiotic containing fractions were combined and lyophilized to give pure compound III. Purity of this penicillin (87%) was assessed according to the hydroxamic acid assay-method²⁰ with crystalline penicillin G as reference compound.

Analytical Methods

The IR spectra were obtained from KBr discs by means of a Beckman IR–4 infrared spectrometer. Nuclear magnetic resonance spectra were recorded with a Perkin Elmer R–12 (60 MHz) spectrometer on 15% solutions of the compounds in D_2O with tetramethylsilane as reference compound. Optical rotation measurement was made with a Perkin Elmer Model 141 polarimeter.

Materials

Penicillin precursors, DL-glutamic acid, DL- α -aminopimelic acid, L-lysine and Dowex W 50×12 (20~50 mesh, H⁺) were purchased from Fluka (Buchs, Switzerland). D- and L-cysteine, D-penicillamine were obtained from Diamalt (Munich, BRD). D- α -Aminoadipic acid and penicillin N were a generous gift from Prof. H. VANDERHAEGHE (Rega Institute, Leuven, Belgium). Penicillinase (staphylococcal origin) was purchased from Leo Pharmaceutical Products (Ballerup, Denmark). Amberlite IRA-68 and Amberlite XAD-4 were supplied by Rohm & Haas (Philadelphia, USA). Cephalosporin C was provided by Glaxo Laboratories Ltd. (Greenford, UK). Microcrystalline cellulose was obtained from Mackerey Nagel & Co. (Düren, BRD). Silica gel TLC-Ready Plastic Sheets (20×20 cm) F1500 LS 254 were obtained from Schleicher & Schüll (Dassel, BRD).

Results

1. Spectrum of Antibiotics Produced by Acremonium chrysogenum ATCC 20389

The lysine-requiring auxotroph grew well when $DL-\alpha$ -AAA or L-lysine was added to the culture media. Penicillin N and cephalosporin C production was only obtained with $DL-\alpha$ -AAA incorporation

Fig. 1. Bioautographic evidence for synthesis of penicillin N-like compound (RIT 2214) by L-CMC supplementation of *Acremonium chrysogenum* ATCC 20389 culture.

(1) authentic cephalosporin C; (2) authentic penicillin N; (3) culture broth of wild type strain ; (4) $DL-\alpha$ -AAA supplemented culture broth of mutant; (5) L-CMC supplemented culture broth of mutant; (6) unsupplemented culture broth of mutant.

Support : Whatman no. 4

Mode : descending

Solvent : *n*-butanol - acetic acid - water (4:1:5) Bioactivities were detected by bioautography on *Bacillus subtilis* ATCC 6633 seeded agar. Penicillinase incorporated in agar plate B.

in the fermentor medium. The α -AAA analogue, L-S-carboxymethylcysteine induced the formation of a penicillin N-like compound (Table 1 and Fig. 1 A and B). No corresponding cephalosporin was detected. No such penicillin activity was formed when other side-chain precursors were supplemented, nor was there any trace of 6–APA and/or 7–ACA production. There was also no evidence for synthesis of deacetoxy- and/ or deacetylcephalosporin C-like compounds.

2. Time Course of β -Lactam Antibiotic Accumulation by *Acremonium chrysogenum* ATCC

20389 and Parent Wild type Strain

In contrast with simultaneous penicillin N and cephalosporin C production by the wild type strain (Fig. 2A) we found a 20-hour time-delay during fermentation of both antibiotics by the lysine auxotroph (Fig. 2B) and observed that penicillin N production started first.

3. Isolation and Purification of RIT 2214

The 3-day, L-CMC supplemented culture broth (ca. 12 liters) was filtered. The 10 liters

Table 1. Bio-assay of α -AAA or L-CMC supplemented *Acremonium chrysogenum* ATCC 20389 culture broths.

	Test organisms and diameter of inhibition zones (mm)							
Precursors	Alcaligenes faecalis ATCC 8750	Alcaligenes faecalis + penicillinase	Alcaligenes viscolactis	Alcaligenes viscolactis + penicillinase	Escherichia coli ATCC 10536	Escherichia coli +penicillinase	Staphylococcus aureus R 1001	Staphylococcus aureus + penicillinase
dl-α-AAA	28	27	32	15	22	0	23	0
L-CMC	18	0	35	0	24	0	28	0

Fig. 2. β -Lactam fermentation profile for parental wild type strain (A) and mutant strain (B). The mutant fermentor medium was DL- α -AAA supplemented (2 g/liter).

Alcaligenes faecalis ATCC 8750 and *Alcaligenes viscolactis* were used as test organisms for the bioassay of respectively cephalosporin C and penicillin N.

filtrate was cooled to 5°C, mixed for 45 minutes with 300 g activated carbon while the pH was continuously adjusted at 4.0 with 1 N HCl. The charcoal was filtered with the aid of diatomaceous earth, washed with distilled water and then eluted with 9.0 liters of a 60:40 acetone-water mixture containing sufficient NH4OH to maintain the pH of the eluate at 6.5. The eluate was concentrated to 500 ml in vacuo (30°C) and then poured on a IRA-68 column (8.0×42 cm, formate cycle). After the column was washed with distilled water, RIT 2214 was eluted with 0.2 M ammonium formate buffer (pH 6.5). Antibiotically active fractions (250 ml) were pooled (total volume: 3.6 liters) and then concentrated to 150 ml in vacuo. The concentrate was applied on a XAD-4 column (4.0 \times 80 cm) and the antibiotic was eluted with distilled water. Fractions were monitored for conductivity and analyzed for bioactivity. The antibiotically most active

Table 2. Rf-values of RIT 2214 as compared with other β -lactam antibiotics.

	T.L.C.			P.C.		
	S_1	S_2	S_3	Sı	SII	
RIT 2214	65	72	22	43	9	
Penicillin N	65	72	22	43	9	
Cephalosporin C	65	72	22	25	9	
Ampicillin				69	44	
Penicillin G	88	87	73	_		
6-APA	_	_	38	_	-	
7-ACA	_	—	42	-		
TLC Support : Silica Mode : Ascen Solvents: S ₁ <i>n</i> -butanol - a acid - water S ₂ <i>n</i> -butanol - w ethanol - ace (5: 2: 1.5: 1. S ₃ acetonitrile - water (75: 2: Detection: Ninhy Iodized starcl Bioautograph <i>B. subtilis</i> AT 6633 seeded a	PC Suppo Mode Solve SI SII Detec	PC Support: Whatman no. 4 Mode : Descending Solvents: SI <i>n</i> -butanol - acetic acid - water (4: 1: 5) SII <i>n</i> -butanol - ethanol water (4: 1: 5) Detection: Bioautography on <i>B. subtilis</i> ATCC 6633				

Fig. 4. I.R. spectrum of RIT 2214 (KBr).

Fig. 5. N.M.R. spectrum of RIT 2214 in D₂O.

Fig. 6. Synthesis of compound III.

6-(D)-{[(2-Amino-2-carboxy)-ethylthio]-acetamido}-penicillanate

fractions were combined and concentrated under reduced pressure by azeotropic distillation with isopropanol to give 330 mg of a yellow powder. Finally, RIT 2214 was further purified according to a dry-column chromatography technique on cellulose (as described elsewhere in this paper) Fig. 7. Stability of RIT 2214, penicillin G and ampicillin in synthetic gastric juice. Composition of buffer: NaCl, 2 g; HCl 1 N, 80 ml; pepsin, 3.2 g; distilled water to 1 liter, pH 1.3 at 37°C.

and recovered as a off-white powder. This material was about 70% pure.

4. Identification of RIT 2214

Like penicillin N, RIT 2214 was positive to ninhydrin, iodized starch and NaN_3-I_2 and it was also destroyed by penicillinase.

Penicillin N and RIT 2214 were found to be chromatographically indistinguishable as shown in Table 2.

RIT 2214 (800 mg) was hydrolyzed in \times HCl for 8 hours at 100°C under N₂. The hydrolysate was evaporated several times to dryness in vacuo with intermittent addition of distilled water. The residue was chromatographed on Dowex 1×8 (OH⁻, 100~200 mesh) column (2.0×40 cm). The column was washed with distilled water and then with 0.1 N CH3COOH. Acidic amino acids were eluted with 1 N CH3COOH, the eluate being collected in 20-ml fractions. The rate of flow was adjusted to 1 ml/min. The S-carboxymethylcysteine containing fractions were located by spotting samples (10 μ l) of each fraction on a silica gel thin-layer plate, spraying with ninhydrin solution and then heating at 100°C for 10 minutes. Pure CMC containing fractions (13~20, assessed with TLC on silica gel, solvent system *n*-butanol-acetic acid-water; 4:1:1) were pooled and evaporated to dryness *in vacuo*. The residue was dissolved in 10 ml of water, then 10 ml of absolute ethanol was added and the pH of this solution was adjusted at 2.9 with a few drops of 25% NH4OH. The amino acid crystallized overnight at 4°C. The substance had m. p. 195°~196°C and the mixed m. p. with an authentic sample of D-S-carboxymethylcysteine was not depressed. Its optical configuration was $[\alpha]_{438}^{25} - 0.040$ (c 5.5 mg/ml, 1 N HCl). Authentic L-CMC showed under identical conditions an $[\alpha]_{450}^{25} + 0.038$ value. IR-spectra of isolated D-CMC and an authentic sample of D-CMC were fully superimposable (Fig. 3). The IR-spectrum of RIT 2214 showed the characteristic β -lactam carbonyl absorption at 1780 cm⁻¹ (Fig. 4). Its NMRspectrum (Fig. 5) revealed the existence of signals at 3.15 (2H, m), 3.40 (2H, s) and 3.90 (1H, m) ppm which were assigned to the S-carboxymethylcysteine side-chain.

From the above data, RIT 2214 was presumed to be a penicillin N analogue with D-CMC as side

Test organism	MIC (µg/ml)			
Test organism	RIT 2214	Ampicillin		
Corynebacterium xerosis	0.1	0.1		
Staphylococcus aureus	1.2	1.2		
Staphylococcus aureus Penicillin-resistant	>80	20		
Bacillus subtilis	0.3	0.3		
Escherichia coli	1.2	1.2		
Escherichia coli Penicillin-resistant	>80	>80		
Aerobacter aerogenes	1.2	1.2		
Enterobacter cloacae	20	1.2		
Klebsiella pneumoniae	>80	40		
Salmonella typhi	0.6	0.6		
Salmonella paratyphi	1.2	1.2		
Salmonella typhimurium	40	40		
Salmonella meleagridis	0.6	0.6		
Salmonella panama	40	2.5		
Salmonella anatum	0.6	0.6		
Vibrio El Tor	0.6	1.2		
Brucella abortus	20	0.6		
Bordetella bronchiseptica	0.6	0.6		
Shigella sonnei	20	2.5		
Proteus morganii	40	20		
Proteus mirabilis	1.2	1.2		
Pseudomonas aeruginosa	>80	>80		

Table 3. Antibacterial spectrum of RIT 2214 and ampicillin.

Table 4. In vivo activity of RIT 2214 in mice.

Pathogens	PD ₅₀ (mg/kg)			
Fatilogens	RIT 2214	Ampicillin		
Staphylococcus aureus No. 663	<10	<10		
Escherichia coli No. 47	<10	23.6		
Escherichia coli No. 9	11	11.5		
Escherichia coli SKF 12140	37.2	56.3		
Salmonella enteritidis No. 24	13.5	55.6		
Salmonella brandenburg No.22	13	36.4		
Salmonella panama No. 20	<10	22		
Shigella flexneri No. 25	52.5	>100		
Proteus mirabilis No. 11	<10	14.8		
Klebsiella pneumoniae SKF 4200	<10	36.7		

chain instead of D- α -AAA. Final identification was achieved by comparison of RIT 2214 with compound III synthesized from II (Fig. 6). RIT 2214 was essentially identical with compound III in IR-, NMR-spectra and chromatographic behaviour and consequently, RIT 2214 was identified as 6-(D)-{[(2-amino-2-carboxy)-ethylthio]acetamido}-penicillanic acid.

5. Stability of RIT 2214 in Acidic Buffer

Appropriate amount of penicillins: RIT 2214, penicillin G, and ampicillin were dissolved in pH 1.3 synthetic gastric juice (for composition see Fig. 7) which had previously been brought to 37° C. Initial concentration of the drugs was adjusted to 1×10^{-3} M. The reaction was carried out in duplicate in a volumetric flask which was immersed in constant temperature bath kept at 37° C. Samples were taken at intervals and assayed immediately for residual antibiotic content according to the hydroxamic acid method.

6. Biological Activity of RIT 2214 — Antibacterial Spectrum

The minimum inhibitory concentrations (MIC) of RIT 2214 and ampicillin were determined against a wide variety of bacteria by the two-fold tube dilution technique using 9-ml volumes of nutrient broth inoculated with 0.05 ml of 1/100 dilution of overnight grown culture; tubes were read after 10 hours incubation at 37°C. The results are shown in Table 3 together with those for ampicillin which was tested for comparison. RIT 2214 was observed to exhibit broad spectrum antibacterial activity. *Salmonellae* species were found to be very sensitive to this penicillin. Ampicillin however was more potent than RIT 2214 *in vitro*. RIT 2214 showed no activity against penicillin-resistant organisms.

7. In Vivo Activity

RIT 2214 was evaluated against ampicillin in experimental infections of mice. Mice were challenged intravenously with the pathogens suspended in 9‰ saline. A single subcutaneous treatment with the antibiotic was given 1 hour after bacterial challenge. Groups of 10 mice were used for each dosage level (100, 33 and 11 mg/kg) and the animals observed for 5 days to determine the median protective dose

 $(PD_{50})^{21}$. The results of the *in vivo* experiments are shown in Table 4.

Surprisingly, RIT 2214 afforded better protection than ampicillin against most of the infections tested.

Discussion

LEMKE and NASH²² scrutinized mutant strains of *Cephalosporium acremonium* for production of β -lactam antibiotics. They obtained a lysine auxotroph unable to synthesize either penicillin N or cephalosporin C. This mutant grew in a minimal medium supplemented with lysine but not with α -aminoadipic acid. Supplementation of the mutant culture with both lysine and α -AAA resulted in the synthesis of trace amount of antibiotic. The lysine auxotroph we studied seems to be blocked before α -aminoadipate since it growths on media either α -AAA or lysine supplemented. No antibiotic activity is detected when this mutant is propagated in a medium only enriched with lysine. The presence of exogenous α -AAA in the medium is sufficient for both growth and substantial production of penicillin N and cephalosporin C. Side-chain precursor incorporation into penicillin by *Penicillium chrysogenum* has been reported to be unspecific.

This is not the case for *Cephalosporium acremonium*. Indeed only the α -AAA analogue, L-Scarboxymethylcysteine is incorporated into penicillin N-like antibiotic (RIT 2214) by our mutant. The reason why no corresponding cephalosporin is synthesized remains puzzling. STEVENS²³ observed a decrease in the production of cephalosporin C but an increase in that of penicillin N on addition of

methionine or L-S-carboxymethylcysteine to suspensions of washed mycelium of Cephalosporium acremonium. The same result was obtained by reduction of aeration of such suspensions. This led us to speculate about the possibility that L-S-carboxymethylcysteine or some derivative thereof might interfere with a key enzyme involved in an oxidative process essential for the synthesis of cephalosporin C. L-CMC, because of its thioether group could possibly play the role of a competitive inhibitor for an oxydase system acting on the sulfur atom of an intra-cellular β -lactam containing compound (IV, Fig. 8). Therefore we propose a sulfoxide such as compound V (Fig. 8) as intermediate for cephalosporin C synthesis. This hypothesis is supported by the discovery of chemical conversion from penicillin to cephalosporin via sulfoxide formation²⁴).

Fig. 8. Hypothetical branched pathway for biosynthesis of penicillin N/cephalosporin C/RIT 2214 and tentative explanation for lack of cephalosporin production by *Acremonium chrysogenum* ATCC 20389 in presence of L-S-carboxymethylcysteine.

Traces of an intra- and extra-cellular β -lactam compound totally different from those normally found in *Cephalosporium acremonium* have been detected in cultures of *Acremonium chrysogenum* ATCC 20389 supplemented with L- α -AAA or L-CMC²⁵). Most of their bio-activity is directed against Grampositive microorganisms. They are destroyed by penicillinase treatment and resemble penicillins with hydrophobic side chain in their chromatographic behaviour. The β -lactam compound appearing in the presence of L-CMC persists in the culture broth but the one detected when L- α -AAA was used as precursor remains intra-cellular and disappears just before the onset of cephalosporin C production. It is tempting to consider these substances as intermediates for cephalosporin C biosynthesis. Nevertheless, the identity and exact role of these β -lactam compounds remain speculative.

RIT 2214 and penicillin N have many features in common, but the former can be produced more readily and seems to be more stable than penicillin N. SYLVESTER *et al.*²⁶⁾ found approximate equal inactivation rates for synnematin B (=penicillin N) and penicillin G at pH 3.0 and 37° C.

The discrepancy between the *in vitro* activity (Table 3) and the *in vivo* activity (Table 4) of RIT 2214 as compared with ampicillin can be explained, at least partially, by the higher plasma concentrations

provoked by subcutaneous injection of the former penicillin²⁵).

Acknowledgements

We thank J. GOOSSENS and J. LEGROS for technical assistance. This work was supported by a grant from the Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture.

References

- LEMKE, P. A. & D. R. BRANNON: Microbial synthesis of cephalosporin and penicillin compounds. *In*: E. H. FLYNN (ed.): Cephalosporins and Penicillins. Chemistry and Biology. pp. 376~379, Academic Press, New York and London 1972
- GAMS, W. (ed.): Cephalosporium-artige Schimmelpilze (Hyphomycetes). pp. 109~111, G. Fisher-Verlag, Stuttgart, Germany, 1971
- TROONEN, H.; P. ROELANTS & B. BOON: New 6-aminopenicillanic acid derivative. U.S. Patent 3,883,511, 1975
- MORTIMER, D. C. & M. J. JOHNSON: Relation between precursor structure and biosynthesis of penicillins. J. Am. Chem. Soc. 74: 4098~4102, 1952
- 5) WAALKES, T. P.; W. S. JONES & J. WHITE: New synthesis of α -aminoadipic acid. J. Am. Chem. Soc. 72: 5760, 1950
- CLAESEN, M.; G. LARIDON & H. VANDERHAEGHE: Preparation of the enantiomers of 2-azidoadipic acid and their 1-monobenzylesters. Bull. Soc. Chim. Belg. 77: 579~586, 1968
- WIELAND, T.: Methoden zur Herstellung und Umwandelung von Aminosäuren und Derivaten. In E. MÜLLER (ed.): Houben-Weyl Methoden der organische Chemie. Band XI/2, p. 310, Georg Thieme Verlag, Stuttgart, Germany, 1958
- GREENSTEIN, J. P.; S. M. BIRNMAUM & M. C. OTEY: Optical enantiomorphs of α-aminoadipic acid. J. Am. Chem. Soc. 75: 1994~1995, 1953
- MICHAELIS, L. & M. P. SCHUBERT: The reaction of iodoacetic acid on mercaptans and amines. J. Biol. Chem. 160: 331~341, 1934
- GOODMANN, L.; L. O. Ross & B. R. BAKER: Potential anticancer agents. V. Some sulfur substituted derivatives of cysteine. J. Org. Chem. 23: 1251~1257, 1958
- HERMANN, P.; K. STALLA, J. SCHWIMMER, I. WILLHARDT & I. KUTSCHERA: Synthese einiger schwefelhaltiger Aminosäure-analoga. J. Prakt. Chem., 311: 1018~1028, 1969
- CLARIDGE, C. A. & D. L. JOHNSON: A specific bioassay for cephalosporin C in fermentation broths. Antimicr., Agents & Chemoth. -1962: 682~686, 1963
- 13) SMITH, B.; S. C. WARREN, G. G. F. NEWTON & E. P. ABRAHAM: Biosynthesis of penicillin N and cephalosporin C. Antibiotic production and other features of the metabolism of a *Cephalosporium* species. Biochem. J. 103: 877~890, 1967
- 14) BATCHELOR, F. R.; E. B. CHAIN & G. N. ROLINSON: 6-Aminopenicillanic acid. I. 6-Aminopenicillanic acid in penicillin fermentations. Proc. Roy. Soc. London. Ser. B. 154: 478~489, 1961
- 15) PERRON, Y. G.; W. F. MINOR, C. T. HOLDREGE, W. G. GOTTSTEIN, J. G. GODFREY, L. B. CRAST, R. B. BABEL & L. C. CHENEY: Derivatives of 6-aminopenicillanic acid. I. Partially synthetic penicillins prepared from α-aryloxyalkanoic acids. J. Am. Chem. Soc. 82: 3934~3938, 1960
- 16) LOEV, B. & M. M. GOODMAN: Dry-column chromatography. In PERRY and Oss (eds.): Progress in Separation and Purification. Vol. III, pp. 73~95, Interscience, 1970
- 17) VANDAMME, E. J. & J. P. VOETS: Separation and detection of degradation products of penicillins and cephalosporins by means of thin-layer chromatography. J. Chromatogr. 71: 141~148, 1972
- 18) BRENNER, M.; A. NIEDERWIESER & G. PATAKI: Amino acids and derivatives. In E. STAHL (ed.): Thin-Layer Chromatography. A laboratory handbook. pp. 730~786, Springer-Verlag, Berlin, Germany, 1969
- KUKOLJA, S.: Chemistry of cephalosporin antibiotics. XI. Preparation and properties of desacetylcephaloglycin and its lactone. J. Med. Chem. 11: 1067~1069, 1968
- BOXER, G. E. & P. M. EVERETT: Colorimetric determination of benzylpenicillin. Colorimetric determination of total penicillins. Anal. Chem. 21: 670~673, 1949
- REED, J. L. & H. MUENCH: A simple method of estimating fifty percent endpoint. Am. J. Hygiene 27: 493~497, 1938
- 22) LEMKE, P. A. & C. H. NASH: Mutations that affect antibiotic synthesis by Cephalosporium acremonium.

Canad. J. Microbiol. 18: 255~259, 1972

- 23) STEVENS, C.: unpublished experiments cited by P. A. FAWCETT, J. J. USHER & E. P. ABRAHAM. Aspects of cephalosporin and penicillin biosynthesis. In K. D. MACDONALD (ed.): The Second International Symposium on the Genetics of Industrial Microorganisms. (Sheffield, 1974) pp. 129~138, Academic Press, 1976
- 24) MORIN, R. B.; B. G. JACKSON, R. A. MUELLER, E. R. LAVAGNINO, W. B. SCAULON & S. L. ANDREWS: Chemistry of cephalosporin antibiotics. III. Chemical correlation of penicillin and cephalosporin antibiotics. J. Am. Chem. Soc. 85: 1896~1897, 1963
- 25) TROONEN, H.: Biosynthesis of a new β-lactam antibiotic 6-(D)- {[(2-amino-2-carboxy)-ethyl-1-thio]acetamido} penicillanic acid. Doctoral thesis, State University of Ghent. Belgium, 1974
- 26) SYLVESTER, J. C.; F. J. KIRCHMEYER & P. J. FARAGO: Synnematin B blood level studies. Antibiot. Annual 1956/1957: 781~785, 1957